

Modern clinical applications of Monte Carlo simulations for in-vivo patient-specific QA

Tony Popescu, PhD FCCPM

Senior Medical Physicist, British Columbia Cancer Agency Adjunct Professor, University of British Columbia Vancouver, Canada

MCMA, Naples, Italy, 17 October 2017

A truly 'patient-specific' QA protocol should be relevant to the actual patient treatment and be capable of providing *in vivo* dosimetry.

The major current commercially-available QA solutions (e.g. ArcCHECK, MapCheck, EPIdose (Sun Nuclear, USA); Delta4 (ScandiDos, Sweden); or MatriXX (IBA Dosimetry, Germany)), are valuable within the pre-treatment paradigm, but would not be able to catch an egregious error during treatment, such as patient misspositioning, missing MLC, etc

In contrast, *transmission* EPID dosimetry and patient 3D dose calculation using real-time linac log information, in conjunction with CBCT imaging to assess changes in patient anatomy, could provide adaptive patient dose accumulation over the entire course of treatment

After scoring an output 4D phase space in DOSXYZnrc, the EPID MC dose can be obtained in a single simulation. Since the MU index is stored for each particle, specific control-point information can also be extracted.

Example: VMAT plan with jaw tracking

MU index: • 0.0 ~ 0.5 • 0.5 ~ 1.0

'Entrance detector' 4D phase space

4D exit phase space in DOSXYZnrc coordinates

'Exit detector' 4D phase space

DOSXYZnrc isource=20 simulation

MC simulation of cumulative EPID dose

Actual cumulative EPID image, acquired in CineMode

Advantages of "time-stamping" particles:

Efficiency

- Only one simulation required
- Similar simulation time as conventional MC
- 4D dose data: [filename].edepdat

 Contains all required dose information
 No need for pre-defined interval of interest

Results ---- MC vs. Measurement

Results ----- MC vs. Measurement

Dose for a single control point

MC EPID Dose of Random Segment

Measured EPID Dose of Random Segment

3D Gamma pass rates:

98.5%

Cumulative dose

Measured EPID Dose of Entire Treatment

Faster simulation using slab phantom

- Record 3D coordinates of energy deposition events
- Voxelization after simulation

Slab Phantom vs. Voxel Phantom


```
1 EPID VMAT prostate phsp out
                                                           #!GUI1.0
20
3/home/tpopescu/EGS HOME/dosxyznrc/Varian iX EPID slab.egsphant
40.521, 0.01, 0
50,0,0,
62, 20, 2, 0, 0, 0, 0, 0, 0
70, -47.64, 0, 90, 270.0, 240, 100.0, 0.0
80, -47.64, 0, 90, 270.0, 240, 100.0, 1.0
92, 2, 0, 120, 0, 0, 0, 0
100,/home/tpopescu/EGS HOME/dosxyznrc/VMAT prostate out.IAEAphsp.0
11500000000000, 0, 999, 87, 911, 100.0, 0, 0, 3, 1, 1, 0, 0, 0, 1, 0
13 :Start MC Transport Parameter:
15 Global ECUT= 0.521
16 Global PCUT= 0.01
17 Global SMAX= 5
18 ESTEPE= 0.25
19 XIMAX= 0.5
20 Boundary crossing algorithm = PRESTA-I
21 Skin depth for BCA = 0
22 Electron-step algorithm= PRESTA-II
23 Spin effects= On
24 Brems angular sampling = Simple
25 Brems cross sections = BH
26 Bound Compton scattering= Off
27 Compton cross sections= default
28 Pair angular sampling= Simple
29 Pair cross sections= BH
   Photoelectron angular sampling= Off
30
31
  Rayleigh scattering= Off
   Atomic relaxations= Off
32
   Electron impact ionization= Off
   Photon cross sections = xcom
35
   Photon cross-sections output= Off
36
   :Stop MC Transport Parameter:
```

 Images for a VMAT prostate patient, acquired during treatment (left) and MC simulated with 1.5×10^9 histories (right):

Cumulative images

Images for a VMAT prostate patient, acquired during treatment (left) and MC simulated with 1.5×10^9 histories (right):

Cine-mode images

MC = (-7.72399533462015e-05) * EPID + (-0.00428593760718081)

MC = (-7.36440915037799e-05) * EPID + (-0.0045601380410491)

MC = (-7.35167541445301e-05) * EPID + (-0.00426583478399796)

MC = (-8.47934052573795e-05) * EPID + (-0.00486446791028039)

Linear fit and statistics of the residuals

EPID File Name	MC File Name	Correlation Coefficient	Slope	Intercept	Min Residuals	Max Residuals	StDev of Residuals
epid_01.Rdata	mc_01.Rdata	-0.90587	-0.000082910	-0.004797	-0.333545	0.605131	0.0559
epid 02.Rdata	mc 02.Rdata	-0.89565	-0.000062382	-0.003452	-0.281118	0.555170	0.0543
epid 03.Rdata	mc 03.Rdata	-0.91569	-0.000077240	-0.004286	-0.338864	0.604519	0.0620
epid 04.Rdata	mc_04.Rdata	-0.91957	-0.000084055	-0.004574	-0.347858	0.527754	0.0653
epid 05.Rdata	mc_05.Rdata	-0.90643	-0.000073644	-0.004560	-0.319605	0.534049	0.0566
epid 06.Rdata	mc 06.Rdata	-0.90372	-0.000073517	-0.004266	-0.304656	0.587691	0.0556
epid 07.Rdata	mc 07.Rdata	-0.88405	-0.000068109	-0.004414	-0.254017	0.425657	0.0503
epid 08.Rdata	mc 08.Rdata	-0.89793	-0.000090120	-0.005835	-0.306793	0.592821	0.0567
epid 09.Rdata	mc 09.Rdata	-0.89324	-0.000084793	-0.004864	-0.258157	0.428704	0.0515

After applying a Savitzky-Golay denoising filter:

Images for the same patient, simulated with 5×10^{10} histories:

4D MC simulation with BEAMnrc/DOSXYZnrc

Dose accumulation of prostate case

A simple and robust trajectory-based stereotactic radiosurgery treatment

Byron Wilson^{a)}

Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Medical Physics, BC Cancer Agency, Vancouver, British Columbia V5Z 4E6, Canada

Karl Otto

Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

Ermias Gete

Medical Physics, BC Cancer Agency, Vancouver, British Columbia V5Z 4E6, Canada

(Received 7 June 2016; revised 20 September 2016; accepted for publication 21 November 2016; published 19 January 2017)

Introduction: We present a Trajectory-based Volumetric Modulated Arc Therapy (TVMAT) technique for Stereotactic Radiosurgery (SRS) that takes advantage of a modern linacs ability to modulate dose rate and move the couch dynamically. In addition, we investigate the quality of the developed TVMAT method and the dosimetric accuracy of the technique.

Z axis (cm)

Z axis (cm)

14

11.5

9

6.5

4

1.5

-1

-6

-8.5

-11

> -3.5

axis (cm)

First few control points in the DOSXYXnrc Source 20 eqsinp file:

0.000, -28.300, -87.887, 90, 91.00, 240, 100.0, 0.0000 0.000, -28.300, -87.887, 88, 90.04, 151, 100.0, 0.0056 0.000, -28.300, -87.887, 86, 90.14, 152, 100.0, 0.0113 0.000, -28.300, -87.887, 84, 90.32, 153, 100.0, 0.0169 0.000, -28.300, -87.887, 82, 90.58, 154, 100.0, 0.0226 0.000, -28.300, -87.887, 80, 90.91, 155, 100.0, 0.0282 0.000, -28.300, -87.887, 78, 91.31, 156, 100.0, 0.0339 0.000, -28.300, -87.887, 76, 91.80, 157, 100.0, 0.0395 0.000, -28.300, -87.887, 74, 92.36, 158, 100.0, 0.0452 0.000, -28.300, -87.887, 72, 93.01, 160, 100.0, 0.0508 0.000, -28.300, -87.887, 70, 93.74, 161, 100.0, 0.0565 0.000, -28.300, -87.887, 68, 94.56, 162, 100.0, 0.0621 0.000, -28.300, -87.887, 66, 95.47, 163, 100.0, 0.0678 0.000, -28.300, -87.887, 64, 96.48, 165, 100.0, 0.0734 0.000, -28.300, -87.887, 62, 97.59, 166, 100.0, 0.0791 0.000, -28.300, -87.887, 61, 98.80, 168, 100.0, 0.0847

3D Gamma: 97.1%

Conclusions:

• We developed a fast, all-in-one, DOSXYZnrc simulation technique for cinemode EPID images, for the purpose of comparisons with the actual images acquired while the patient is being treated.

• In addition, the patient dose could be simulated and accumulated over the entire course of treatment (ideally, in an adaptive manner, using daily CBCT data), resulting in an authentic 'patient-specific QA'.

Acknowledgements:

International collaborators: **Blake Walters Frederic Tessier** Frank Verhaegen **Dave Rogers** Iwan Kawrakow **Emily Heath Cecilia Borges Jan Seuntjens** Jeff Siebers **Rickard Cronholm James Robar** Alan Nahum Jarkko Ojala

Local collaborators: Julio Lobo **Shiqin Su** Iulian Badragan Parmveer Atwal Alanah Bergman **Tony Teke** John Lucido **Ernest Tsang** Vitali Moiseenko **Byron Wilson Ermias Gete** Karl Otto

Research funding:

British Columbia Cancer Agency

Varian Medical Systems

Thank you !

Photo of Mt. Baker (an active volcano), as seen from Vancouver Island